

Tel: +420 603 476 934
E-mail: top-bio@top-bio.cz
www.top-bio.com

Carrier-ACRYL

For precipitation of small amounts of RNA or DNA (Catalogue number C081 and C082)

rev. 04/2025

Description

Carrier-ACRYL is linear polyacrylamide (LPA) of Molecular Biology Grade. It is an efficient inert carrier for ethanol precipitation of picograms and higher quantities of RNA or DNA. Carrier-ACRYL offers several advantages over other carriers, such as tRNA, yeast RNA, or sonicated DNA, for recovering nucleic acids prior to downstream applications. Carrier-ACRYL is synthetic polymer, which is not source of biological contamination in the samples. Presence of Carrier-ACRYL during ethanol precipitation results in complete recovery of fragments larger than 20 base pairs while failing to precipitate shorter fragments and free nucleotides. This feature makes Carrier-ACRYL useful for separating reactions products from unincorporated nucleotides and oligonucleotide primers. Nucleic acids recovered after precipitation in the presence of Carrier-ACRYL are immediately suitable for downstream applications such as PCR, RT-PCR, restriction digestion, ligation, and sequencing.

Technical data

Components and packaging

- Carrier-ACRYL is supplied in deionized, ultrapure, and sterile water (18 Mohm.cm) at a concentration of ~25 mg/ml.
- Basic packaging contains 1 ml of Carrier-ACRYL in 2 ml plastic vials with screw cap.
- Carrier-ACRYL is a part of the set for RNA or DNA precipitations, containing besides Carrier-ACRYL also Carrier-iRNA and Carrier-GLY, 1 ml each. Comparison of various carriers for RNA or DNA precipitation and key references are shown in Table 1.

Storage and Stability

- For short terms (months) store at temperature 4°C ± 3°C.
- For long terms store at temperature -20°C ± 5°C.

Quality control

Each batch of Carrier-ACRYL is analyzed in several assays. For the assays, DNA or RNA is examined in the Carrier Assay Buffer (CAB): 10 mM Tris-HCl, 2 mM MgCl₂, 1 mM dithiothreitol, pH 7.5 at 37°C.

- Nucleic acid precipitation assay. Economy DNA marker (Cat. No. D071; 2.5 μl) is mixed with 0.2 ml 10 mM Tris buffer, pH 8.0 + 1 mM EDTA, 1 μl Carrier-ACRYL, 20 μl of 3 M sodium acetate, pH 5.2, and 0.6 ml of 96% Ethanol. After 30 minutes at 2 8°C the mixture is centrifuged for 10 min at 12,000 x g, analyzed by electrophoresis in agarose gel with ethidium bromide and observed under UV light. More than 90% of all components of the DNA marker is recovered in the precipitate.
- Nick activity assay. Plasmid pUC19 (1 μg) in 0.2 ml CAB is incubated with Carrier-ACRYL (50 μg) for 1 hours at 37°C, followed by electrophoresis in agarose gel with ethidium bromide. No nicking activity is observed.
- Ribonuclease assay. RNA (1 μg) in 50 μl CAB with Carrier-ACRYL (50 μg) is incubated for 1 hours at 37°C, followed by electrophoresis in agarose gel with ethidium bromide. No changes in properties of RNA are observed under UV light.

Cat. No.	Product name and specification	Amount
C081	Carrier-ACRYL	1 x 1 ml
C082	Carrier-ACRYL	5 x 1 ml

Table 1. Comparison of various carriers for RNA/DNA precipitation.

Carrier	Key component	Advantages	Disadvantages
Carrier-iRNA	Polyinosinic acid (1)	Chemically defined RNA, which is	Could inhibit reactions catalyzed
(previously labeled as		more suitable as carrier for cDNA	by terminal transferase or
RNA carrier)		synthesis and other RNA/DNA	polynucleotide kinase. Interferes
		manipulations than widely used	with determination of RNA or
		rRNAs or tRNAs.	DNA concentrations.
Carrier-ACRYL	Linear	Inert neutral carrier, which does not	Does not co-precipitate short
	polyacrylamide (2, 3)	inhibit DNA cloning, DNA-protein	oligonucleotides (≤ 20 pbs).
		interactions, and enzyme reactions.	
		Does not interfere with determination	
		of RNA/DNA concentrations. Does not	
		co-precipitate short oligonucleotides	
		(≤ 20 pbs).	
Carrier-GLY	Highly purified	Purified glycogen does not inhibit	May inhibit some DNA-protein
	polysaccharide,	DNA cloning and most enzyme	interactions and reverse
	glycogen (deprived of	reactions; does not interfere with	transcription of long RNA
	RNA and DNA) from	determination of RNA/DNA	templates.
	oysters ⁽⁴⁾	concentrations. It is suitable as inert	
		carrier for precipitation of shorter	
		oligonucleotides (≥ 8 pbs).	

Reference

- 1. Winslow, S. G., and P. A. Henkart. 1991. Polyinosinic acid as a carrier in the microscale purification of total RNA. Nucleic Acids Res. 19: 3251-3253.
- 2. Gaillard, C., and F. Strauss. 1990. Ethanol precipitation of DNA with linear polyacrylamide as carrier. Nucleic Acids Res. 18: 378
- 3. Sachdeva, R., and M. Simm. 2011. Application of linear polyacrylamide coprecipitation of denatured templates for PCR amplification of ultra-rapidly reannealing DNA. Biotechniques 50: 217-219.
- 4. Tracy, S. 1981. Improved rapid methodology for the isolation of nucleic acids from agarose gels. Prep. Biochem. 11: 251-268.

Protocol

Equipment and reagents required but not provided

- Microcentrifuge (12.000 x g)
- Sodium acetate buffer solution, 3 M, pH 5.2. Top-Bio, Cat. No. P053
- Ethanol, 96%, Mol. Biol. Grade, Top-Bio, Cat. No. P054
- Ethanol, 75%, Mol. Biol. Grade, Top-Bio Cat. No. P044
- 10 mM Tris-HCl + 1 mM EDTA buffer, prepared by 100x dilution from Tris-EDTA buffer solution, Top-Bio, Cat. No. P055
- PCR Ultra H₂O (Top-Bio Cat. No. P040) or PCR H₂O (Top-Bio, Cat. No. P442)

Procedure

- 1. To a maximum of 400 μ l of RNA or DNA sample in a 1.5 ml tube add 1 μ l of Carrier-ACRYL (corresponding to 25 μ g of Carrier-ACRYL).
- 2. Add 0.1 volume of 3 M sodium acetate, pH 5.2.
- 3. Add 2.5 3.0 x sample volume of 96% ethanol.

Example reagent volumes

DNA/RNA sample	Carrier-ACRYL	3M Sodium acetate buffer	Ethanol 96%
200 μΙ	1 μl	20 μΙ	600 μl

- 4. Vortex the mixture briefly (2 sec) and allow to stand for at least 30 min at 2 8°C.
- 5. Centrifuge the tubes for 15 min at 4°C in a microcentrifuge at maximum speed (12,000 x g).
- 6. Carefully remove the supernatant and add 200 µl 75% ethanol.
- 7. Centrifuge for 2 min and carefully remove supernatant.
- 8. Air-dry the pellet for 15 min.
- 9. Dissolve RNA or DNA in 10 mM Tris-HCl + 1 mM EDTA buffer, PCR ultra H_2O , or PCR H_2O .